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I. INTRODUCTION 

In engineering the study of groups of interrelated 

components acting as a collective independent unit is usually 

referred to as systems theory. The concept of a system is 

quite general, however, and it is consequently appropriate 

also in such fields as the physical sciences, economics, 

ecology, sociology, and so on. Of interest is the modelling, 

simulation, and analysis of such systems, the goal being not 

only to understand them, but to predict and control their 

behavior as well. 

Since the nature of most systems is dynamic, their 

history is of particular interest. An important method of 

modelling this evolution is to indicate the trend in the 

state of a system due to its immediate condition. If the 

avauc ux CL ixaa vcczi xxi. owiuc; iucu.jax^x ^ uxixo 

evolutionary model takes the form of a differential equation. 

At this point mathematics becomes an important tool to the 

systems theorist. 

To achieve greater generality in such a differential 

equation model, the system state may be assumed to belong 

to some abstract space. The resulting theory is then ap­

plicable to a variety of specific cases. Since it may also 

be necessary to study systems subject to random influences, 

stochastic differential equations are also of interest. In 
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this dissertation one aspect of systems theory is presented 

in the context of "both abstract and stochastic models. This 

is the problem of large-scale systems stability. 

Among the difficulties encountered with large-scale 

systems is that methods of analysis cannot generally be ap­

plied in a straightforward manner due to the size and com­

plexity of such systems. This may in fact be used as a 

definition of the term "large-scale". Large-scale systems 

theory involves the development of procedures for applying 

existing theory in a manner which makes an analysis tract­

able. A significant approach to this problem has been to 

isolate various portions of a system so that the resulting 

subsystems are sufficiently small to permit analysis. Based 

on the discovered properties of the isolated subsystems and 

their interconnecting structure, one may often deduce prop­

erties of the so-called composite or interconnected system. 

One property which has been successfully treated by 

this method is stability. The major concerns of stability 

analysis are to determine the sensitivity of the system state 

to perturbation, and also to discover any tendency toward 

some preferred or equilibrium state. 

A particularly useful method of stability analysis, 

which will be of concern here, is the direct method of 

Lyapunov, by which one investigates a scalar measure of the 

deviation of the system state from equilibrium. No specific 
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history of the system need be known since only the dif­

ferential equation and an appropriate Lyapunov functional 

are required. The Lyapunov stability of large-scale sys­

tems has been considered by several investigators (see, 

e.g. [1]-[11]). The results presented herein represent a 

useful extension of many previous results in that they are 

formulated first in the setting of differential equations 

on Banach spaces, and second for a variety of stochastic 

differential equations. This includes a large number of 

cases not previously considered and allows, as an extra 

advantage, the analysis of hybrid systems (i.e., systems 

described by mixed types of differential equations). In 

addition, the theory of M-matrices has been applied to ob­

tain several new stability theorems. In order to demon­

strate the usefulness of these results several specific 

examples are included. Finally, in the last section these 

results will be compared to earlier results in more detail 

in order that they may be seen in their proper perspective= 
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II. NOTATION 

In the subsequent development the following notation 

will be used. Specialized notation will be explained in 

its appropriate context. 

Let denote a Euclidean n-space, and let |• | denote 

the Euclidean norm. In particular, R will be the real 

numbers, and the nonnegative real numbers will be denoted 

R^ = [0,°°). A vector in R^ is specified as x = (x^), 

i = l,...,n. Such a vector is said to be positive, i.e. 

X > 0, if x^ >0, i =1,... j-t. The transpose of x is de­

noted as x'. 

Let an mxn matrix be denoted as A = ((a^j)), 

i=l,...,m, j =l,...,n. The transpose of A is denoted as 

A'. For a square matrix B let X(B) be an eigenvalue of B, 

Qet(B) be the determinant of B, and tr(B) be the trace of B. 

If B is symmetric, X^(B) and X^(B) will represent the maximum 

and minimum eigenvalues of B, respectively. The matrix norm 

= [tr(A'A)]^ will be used. 

Let denote the Kronecker delta, i.e. =1 and 

6^ j =0 for i  ̂ 3. 

Banach spaces will be denoted by X or Z with appro­

priate subscripts where necessary. Norms on X or Z are 

denoted by ||*|| with subscripts referring to the corre­

sponding space. 
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The Banach space X = Lp[a,b] will be used, where 

Lp[a,b] is the space of Lebesgue measurable functions 

on the interval [a,b] with norm ||f|| = If <°°, 

1 <p <°°. 

Time derivatives are expressed by a dot over the var­

iable (e.g., 3c), while first and second order partial 

derivatives are given by = (9/9Xj^), i=l,...,n, and 

^ = ((9^/9Xj^9y^)), i=l,...,n, j =l,...,m, where x eR^, 

y 

Comparison functions : R"^ -+ R"*" are said to be of class 

K (i.e., ̂  eK) if they are continuous, strictly increasing 

functions on R^, and if ^(0) = 0. If ̂  eK and lim ^(r) = o° 

then ̂  is said to be of class KR (i.e., 4» eKR). Two com­

parison functions ^2 are said to be of the same 

order of magnitude if there exist positive constants and 

is.2 such that ^2^1^^^ for all r eR"" . (For 

a discussion of comparison functions, see Hahn [12].) 

Let o(r) denote terms of second or higher order in r 

so that lim o(r)/r = 0. 
r-»o 
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III. DYNAMICAL SYSTEMS ON BANACH SPACES 

The continuing use of Lyapunov's direct method as an 

important tool in the qualitative analysis of dynamical sys­

tems has been augmented in recent years by the extension of 

this method to systems defined on abstract spaces. Such 

systems have been considered, e.g., in [13]-[20], and num­

erous other references. The stability of such systems has 

been considered in [21]-[30], and others. 

Dynamical systems are often described by semigroups of 

transition operators which define explicitly the history of 

the system. Several types of dynamical systems are con­

sidered in the literature including strong [19]-[22], weak 

[23], extended [2^], and limit [25] dynamical systems. In 

the following section, strong dynamical systems will be con­

sidered -with indications of how the results may also be ap­

plied to weak dynamical systems. 

Definition 1 [3O] .  Let {T^], t eR"^, be a family of 

mappings of a Banach space X into itself. Then T^ is a 

semi-group of transition operators defining a strong dynam­

ical system on X with trajectories 

x^ = T^a , Xq = a , (1) 

if 

(i) T^a is continuous in both t and a, 
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(il) HQSL = la = a, I denoting the identity operator, 

and 

(iii) T^T^a = Tt+T* , 

for all t, T eR and a eX.I 

It is assumed, henceforth, that 

T^O = 0 , t eR"^ . (2) 

This will be referred to as the trivial solution. 

It often occurs that the most one can determine for a 

dynamical system is weak continuity. In this case the sys­

tem is called a weak dynamical system. It is still pos­

sible, however, to apply the theory to be presented, given 

certain modifications. If X is a separable and reflexive 

Banach space, then the weak topology on X is metriz-

able with some metric p. Replacing \\x.\\ by pCx^o) and re­

placing all topological and continuity properties with their 

weak analogs will lead to weak stability results which are 

similar to the strong stability results to be derived. In 

fact, in a number of instances, for example, finite dimen­

sional systems, the weak and strong results are equivalent. 

Although it is possible to express stability theorems 

for (1) (see e.g. [12], [22]), physical systems are rarely 

described in semigroup form. Rather, system trajectories 

are usually defined by the solutions of a differential 
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equation on X of the form 

= Ax^ , Xq = a . (3) 

The operator A, possibly nonlinear, is assumed to have its 

domain D(A) dense in X. It is also assumed that AO = 0. 

A function x^ :R^ ->X is said to be a solution of (3) 

if Xj. £D(A) and possesses a derivative which satisfies (3) 

for all t eR"^, Henceforth, system (3) is assumed to be 

well-rosed in the sense that it possesses a unique solu­

tion for each Xq = a eD(A), and solutions depend continu­

ously on a for all t eR^. 

Under the assumption of well-posedness, the solutions 

of (3) determine the semigroup on D(A) with T^a = x^, 

Xq = a eD(A). Since D(A) is dense in X, may be extended 

continuously to X. Therefore, (3) defines a strong dynam­

ical system on X. The operator A is known as the strong 

infinitesimal generator of T^, since 

Ax = lim Aj.x , A+. = t~^(T^. - I) , (^) 
t-o+ ^ ^ t > 

for all X eD(A). 

Consider now the following examples. 

Example 1: Consider the n-dimensional linear case where 

x^ eR^ satisfies the equation 
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= Ax^ , Xq = a , (5) 

A being an nxn matrix. It is well known that the semi­

group for (5) is the nxn transition matrix exp(At). The 

domain of A is all of R^. 

In the nonlinear case on conditions for the ex­

istence, uniqueness and continuity of solutions are known 

also, but in general a semigroup solution is difficult or 

impossible in closed form. 

The theory of linear differential equations has been 

extended to infinite dimensional spaces and unbounded linear 

operators with considerable success (see, e.g. [19], [20], 

[27], [30], and so on). 

As an example of such a linear system consider the 

integro-differential equation 

b 

x^Cu) = Xx^(u) + j K(u,v)x^(v)dv (6) 

a 

where the kernel K is sufficiently smooth and Xj.(u) e Lp[a,b] 

for each t s R^. Equation 6 is of the form (3) and it can be 

shown (see [21]) that, given a = a(u), then 

.t b 

x^(u) = T^a(u) = e ^[a(u) + j J R(u,v,T)a(v)dvd'r] 
0 a 

(7) 
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where R(U,V,T) is the resolvent of K(u,v).l 

A differential equation may not be in the proper form 

as it is in the example above. This is seen, for instance, 

in the following case. 

Example 2: The functional differential equation 

^ x(t) = g(x^) , Xq( T )  =  A ( T )  ,  (8) 

where x(t) eR for each t and x^Ct) = xCt+x) for 

T £ [-d,o], is not in the form of Equation 3 since the 

domain of the functional g is not R, but rather some func­

tion space. 

However by setting 

[ "é ' T£[-d,o) 

Ax^c-^) = < (9) 

gCx^C^)) , T = 0" 
V 

it may be shown that solutions of (8) and (3) are equiva­

lent. Existence, uniqueness and continuity conditions for 

(8) may be found in [18], [30], and so on.I 

Numerous other examples of systems which are of the 

form (3) could be given, including certain classes of par­

tial differential equations, systems of incomplete informa­

tion, differential-difference equations, and others. For 
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such examples see [12], [21], [22], [26], and so on. 

In Chapter V it will be shown how the diffusion equa­

tion, a partial differential equation of the form (3), 

plays an important role in the stability analysis of 

stochastic systems. 

The Lyapunov stability of system (3) is defined in 

the usual manner as follows. 

Definition ?: The trivial solution is said to be 

asymptotically stable if, given Xq = a, 

(i) for every £ > 0 there is a 6 >0 such that for 

any a &X, ||a|| < & implies ||x^|| < e for all 

t £ R"^ , and 

(ii) there is a 6^ > 0 such that for any a £ X, 

IIall < implies ||x^|| -j-O as tI 

Definition The trivial solution is said to be 

exponentially stable if, given Xq = a, condition (i) 

of Definition 2 is satisfied and 

(ii)' there are positive constants M and p such 

that for any a £ X, ||a|| < 6^ implies i|x^j| < Me" 

for all t £ R"*". I 

When the s in the above definitions can be made 

arbitrarily large, the respective stabilities are said to 

be global. 
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Stability results for (3 )  will be expressed in terms 

of scalar functions V : X -+ R and the upper right Dini 

derivative of V along solutions of (3) given as 

V(a) = Tim t~^[Y(x^) - V(a)] . (10) 

The ordinary derivative is not used since it may be un­

defined . 

In order to take advantage of (3) in the expression 

for V, it is necessary to restrict the class of admissible 

V functionals. 

Définition h: A function V : X -+ R is said to be an 

admiaaible Lvapunov functional if 

(i) 7(0) = 0 , 

(ii) V is continuous on X, 

(iii) the closure of the set 

= [a £X : V(a) < mj , (11) 

denoted by is bounded for all m >0, and 

(iv) there exists a function VV : X X X -»• R such 

that for all a, x £ X, 

(a) V(a+x) - V(a) <vv(a,x) + o(Jlx|| ) 

(b) '7V(a,x) is linear and continuous in x, 

uniformly with respect to for each 

m > 0.1 
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Under the assumptions of Definition ̂  and given (1) 

and one has for all a £ fl D(A) and any m >Q, 

V(a) = lim t~^[V(T^a) - V(a)] 
t_^+ ^ 

< lim t~^[VV(a,T.a-a) + o(llT^a-all )] 
" t-40+ ^ ^ 

< lim VV(a,A^.a) + lim t"^o(t llA^all ) 
" t->o+ t->o+ 

= VV(a,Aa) . (12) 

It follows from the fact that D(A) is dense and from the 

continuity of V and the solutions that, givenVV(a,Aa) 

< 0 for a n D(A), then V(a) < 0 for all a e Q^. On this 

basis the following stability theorems may be stated. 

Theorem 1: Given the assumptions for (3), suppose there 

exist an admissible Lyapunov functional V on X and three 

functions s KR, e K, such that for some m > 0, 

(i) ̂^(IJali ) < 7(a) < iftg (jjajj ), a and 

(ii) vv(a,Aa) < - T])^(ljall ) , a s fl D(A) . 

Then the trivial solution of (3) is asymptotically stable.i 

Theorem 2; If in Theorem 1 the functions ^2 ^3 

are of the same order of magnitude in class KR, then the 

trivial solution of (3) is exponentially stable.! 
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These theorems, which are readily shown (see, e.g. 

Hahn [12]), are the results on which the theorems of the 

next chapter are based. If the hypotheses of Theorems 1 

and 2 can be shown to hold for an arbitrarily large m, 

then one is able to conclude that the respective stabil­

ities are global. 
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IV. MAIN RESULTS: LARGE-SCALE SYSTEMS 

DEFINED ON BANACH SPACES 

Large-scale systems will now be considered which are 

in the form of interconnected subsystems. The isolated 

subsystems'^, i=l,...,'t, are introduced first. Then, it 

is shown how these subsystems are to be interconnected to 

form the composite system . The remainder of this chapter 

contains the main results for asymptotic and exponential 

stability of ̂ . The proofs of these theorems may be found 

in Appendix A. 

The isolated subsystems are differential equations in 

the manner of (3). That is, 

, 2q = a^ , i=l,...,'t (13) 

are assumed to satisfy all restrictions satisfied by (3),. 

where z'^eZ^, being the subsystem state Banach space 

with norm 11 « IL . 

By choosing the subsystems of sufficiently low order 

each may be analyzed by Lyapunov's direct method as outlined 

in the previous chapter. The resulting information is sum­

marized in the following properties. 

Definition 5: An isolated subsystem is said to possess 

Property A if there exist an admissible Lyapunov functional 

V^, three functions ^13 and a real constant 
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jj; such that for some m^ > 0 

(i) •ij^dla.ll.) < 7^U^) < , a. s 5^ 

and 

(ii) VV^(aj^,Fj^a^) < c7j;^^^(||aj_lj) , a^^ D(F^) .1 

Definition 6: If in Definition 5 the functions ^2 

Tj)^ are of the same order of magnitude in class KR, then 

isolated subsystem.<8^ is said to possess Property B.I 

Clearly, if < 0, then Definitions 5 and 6 correspond 

to the hypotheses of stability Theorems 1 and 2. The con­

stant may be loosely interpreted as a damping factor, 

and it is therefore a measure of the degree of stability 

of the subsystem This will be useful in studying the 

effects of subsystems on the behavior of the entire inter­

connected system. 

The composite system state consists of the vector of 

subsystem states, x = (z^), i=l,...,'i. Letting 

X = X  Z. 
i=l ^ 

be the composite system space, define the composite norm 

11x11 =m^llz^ll^ . (1^) 

Under this norm X is a Banach space. 
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The subsystems are interconnected in the following 

fashion to comprise the composite system 

: 2^ ~ ̂ i^t 5 i=l,...,-t (1?) 

with Xq = a = (a^), i=l,...,'t. The operator G^, defining 

the interconnection structure, has domain D(Gj^)C X and 

maps D(G^) into Z^. 

It should be noted that, although the additive nature 

of the interconnections in (15) may appear to be restrictive, 

it is, nevertheless, always possible to achieve such a de­

composition. It may occur that, either by choice or by 

necessity, one or more of the operators is zero. How­

ever, this case is not excluded by Properties A or B. The 

introduction of the isolated subsystems is therefore as 

much a conceptual tool as it is a natural formulation of 

the problem. 

Letting Ax = (F^z^ + G^x), i=l,...,'t, Equation 15 can 

be expressed equivalently as 

iS : x^ = AX.J. , Xq = a , (16) 

which is clearly identical to (3). It will be assumed that 

all restrictions on (3) hold as well for (16). Therefore 

Theorems 1 and 2 may also be applied to (16) and this will 

be the basis for subsequent results. 
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The proofs of the theorems in this section may be found 

in Appendix A. 

Theorem 1: Assume that composite system satisfies the 

following conditions: 

(i) each isolated subsystem possesses Property A; 

(ii) given the Lyapunov functionals and comparison 

functions i=l,...,'t, of hypothesis (i), 

there exist real constants b^j, i,i=l,...,t, 

such that 

g 

) < [ +5^2(II aj^ll ) ]'̂  ^^ [ 'I'̂  j(|1 aj|| j 

^ (17) 

for all a e X  Q_ H D(A); and 
i=l 

(iii) there exist positive constants a^, i=l,...,'t, 

such that the test matrix S = C(s. .)) , i,^=l,... 

defined by 

j a^(cr^+bj_j_) , i=j 

( 

is negative definite. 

Then the trivial solution of ̂  is asymptotically stable.1 
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Theorem 4: Assume that composite system ̂  satisfies the 

following conditions: 

(i) each isolated subsystem possesses Property B and 

all comparison functions i=l,.../L, 0=1,2,3, 

are of the same order of magnitude; 

(ii) hypotheses (ii) and (iii) of Theorem 3 hold. 

Then the trivial solution of >8 is exponentially stable.! 

It is emphasized that the above results express the 

stability of ̂ 8 in terms of the lower order subsystem prop­

erties, and in terms of bounds on the interconnecting 

structure (Equation 17). The confining relationship be­

tween these properties is determined by the test matrix S. 

The matrix S is of particular interest since a num­

ber of observations may be made regarding the negative 

definiteness condition. 

First, note that a necessary condition for negative 

definiteness is 

cTi +bii < 0 , i=l,...,^ . (19) 

Thus, each subsystem must either possess a certain degree 

of stability, or the interconnecting structure must provide 

local stabilizing feedback around unstable subsystems. 

Second, note that the nature of the bounds on the 

interconnecting structure is to express their strength. 
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relative to the subsystem damping. The negative definite-

ness condition has the effect of limiting the degree to 

which the interconnecting structure effects the behavior 

of the composite system. Therefore, these results are 

essentially weak coupling conditions. That is, given the 

degree of stability of the subsystems (with the local feed­

back), the condition on S determines a permissible strength 

of interconnection below which one may conclude stability 

for the interconnected system. This appears to be char­

acteristic of most results obtained so far for large-scale 

systems. 

The observations just cited suggest a systematic pro­

cedure for the stabilization of unstable large-scale sys­

tems through the use of local stabilizing feedback around 

the subsystems. With subsystems of sufficiently low order 

existing stabilization techniques could be applied with 

relative ease. The degree of stabilization needed would 

be determined by the condition on the test matrix S. 

Note that in using Theorems 3 and V it is necessary 

to find the positive constants i=l,...,'t, such that 

S will be negative definite. It is not evident in advance 

that such constants exist, and although the choice of such 

constants is not unique, one may not be fortunate in find­

ing an appropriate set. If the constants b^j, i/^, i,j= 

1,...,-^, are nonnegative, the necessity of choosing 
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arbitrary constants may be eliminated. This will be ac­

complished in the following results. It should be noted, 

however, that no such restriction on the sign of the b^^'s 

was made in Theorems 3 and Therefore these theorems 

will remain important due to their greater generality. 

The assumption of nonnegativeness on the sign of the 

off-diagonal terms in (18) is useful in that it permits the 

use of the theory of M-matrices in expressing stability 

conditions for >8 . 

Definition 7 [4^: A matrix D = i,j=l,.is 

said to be an M-matrix if d^^ < 0 for all i/j, and if one 

of the following equivalent conditions is satisfied : 

(i) the successive principal minors of D are each 

positive; 

(ii) there is a vector x >0 such that Dx >0; 

(iii) there is a vector y >0 such that D'y >0; 

(iv) D is nonsingular and all elements of D" are 

nonnegative; and 

(v) the real parts of the eigenvalues of D are 

all positive.! 

If D is an M-matrix, the existence of a diagonal matrix 

W with positive diagonal elements can be shown such that 

WD + d'w is positive definite (see Appendix C). This and 

a number of other properties of M-matrices can be found in 

[4], [311, [32], and so on. These results are used to yield 
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the following theorems. 

Theorem *?; Assume that conditions (i) and (ii) of Theorem 

3 hold with >. 0 for all i/j. If the successive princi­

pal minors of the test matrix D = ((d-J), 1,^=1,...,-^, are 
J 

positive, where 

f 
J-(Oj^+bj^l) , i=j 

di- = .( , (20) 

-tlj , 

then the trivial solution of ̂  is asymptotically stable.I 

Note that this test matrix condition is completely 

computational, involving no arbitrary constants to be 

chosen. Thus, Theorem 5 offers a distinct advantage over 

Theorem 3* The next theorem, while reintroducing arbitrary-

constants, is in a form which illustrates very clearly the 

weak coupling nature of these results. 

Theorem 6: Assume that conditions (i) and (ii) of Theorem 

3 hold with b^^ 2 0 for all i^^. If there exist positive 

constants , i=l,...,^, such that 

(a,+b.,) < - Z (?^)b. . < 0 , i=l,...,^, (21) 
X IX 4 =% -"-J 

h 
then the trivial solution of^ is asymptotically stable.I 

One can now see immediately that Equation 19 is satis­

fied, and that the strength of the interconnections between 
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subsystems must be limited as indicated previously. 

The choice of constants in Theorem 6 is less difficult 

than in Theorem 3 since the condition to be satisfied is 

simpler. Linear programming techniques appear to be ap­

propriate in this case. 

It is possible to obtain other theorems which are 

similar to Theorems 5 and 6 by using the theory of M-

matrices. For example, the condition on the text matrix 

D in Theorem 5 could be changed to require that D must 

possess a positive inverse or that D must have its eigen­

values in the right half plane. This is made evident in 

Appendix A where the previous two theorems are shown 

to be mathematically equivalent. These two were chosen 

since they appear to be the most useful among the alter­

natives. An investigator can therefore choose among sev­

eral possible tests for the stability of large-scale sys­

tems. 

It can be shown that if a matrix B is qn M-matrix, 

then D-p.1 is an M-matrix if and only if ix <minReLX(D)] (see 

Appendix C). This is the basis for the following important 

result. 

Theorem 7; Let the matrix D be defined as in Theorem 55 

and assume that composite system has been shown to be 

asymptotically stable by either Theorem 5 or 6. Then any 

modification of the subsystems (or their local feedback) 
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which increases each (cr^+b^j_) by less than = minRe[X(D)] 

will leave the system asymptotically stable.I 

In this sense n may be interpreted as a margin of sta­

bility for the large-scale system. It may be used to judge 

how sensitive the stability is with respect to structural 

changes and is therefore a useful parameter. 

Theorems 5-7 can readily be extended to include ex­

ponential as well as asymptotic stability. This is ac­

complished in the manner of Theorem k- by simply requiring 

all comparison functions to be of the same order of magni­

tude. 

The following examples will serve to illustrate the 

manner in which the previous theorems are applied. In the 

first example a simple hybrid system is given as a demon­

stration that such systems may be approached by the method 

presented. The second more complex example represents an 

actual system arising from the field of nuclear reactor 

dynamics. 

ExamDle_3: Consider the hybrid system described by the 

equations 
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= Az^ + bj f(y)z^(y)dy 

0 

z| = aVyyZ^(y) - pz|(y) + g(y)c'z^ 

> (22) 

where z^ eR^ and z^ el^tO,!]. The second subsystem state 

is assumed to satisfy the boundary condition 

L 

Vyz|(y)^ < 0 t eR (23) 

In addition, A is assumed to be a stable nxn matrix. The 

constants a and p are positive, b and c are n vectors, and 

f, g eL2[0,L] are sufficiently smooth to guarantee solu­

tions for (22). 

The isolated subsystems are chosen as 

= Az 
t ' 

= z%W - Pz^(y) 

and 

(240 

'yy 

Since A is stable, there exists a positive definite sym­

metric matrix P such that a'p + PA = - Q is negative 

definite. Choosing has 

^ll( 1 ^1 1 ^ ~ \q(^ ) 1 ^1 1 — ̂ l(^l ) ̂  ) 1 I 9 

(25) 



www.manaraa.com

26 

and 

^V^(a^,F^a^) 

(26) 

where 

^IsCr) = r 

and 

cJi = -y.Q) . (27) 

For choose ~ 2 11^2^12 that 

^21^11 ̂ 2"2^ ̂  ̂2^^2^ ̂  ̂ 22^" ̂2"2^ ' 
(28) 

and 

VVgtagyFgag) =-|j 3-2^7) F2a2(y)dy 

0 

a2(y)[aVyya2(y) - pa2(y)]dy 

L L 

[-a(Vya2(y))^ - ̂ a2(y)^]dy + f 

0 0 

< -»p llagll^ - ̂ 2 ̂23^^! ̂2^1 ) (29) 
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where 

i|)2^(r) = r^ 

and 

cr^ = -P . (30) 

Clearly, isolated subsystems ^2 b°th possess 

Property B. 

Next consider the bounds on the interconnecting 

structure. One has 

VV^(ai,Gia) = ^ V(aj_)*Gj^a = 2a^*Pbj f(y)a2(y)dy 
1 0 

< 2laiiyP)lbl IIfII2 IIagll2 (31) 

which implies that 

\l = 0 , b^2 = 2 \(P) |b| IIfII2 . (32) 

Finally, 

vv^(ao.Gna) =41 V. an(y)^G^a dy C. ^ ' C Z: J Clg E. ' TL. 
0 

L 

0 

which implies that 

p ^ 

= J. a2(y)g(y)c'a3_dy < |la2l!2 l!gll2 1°! l^^l (33) 
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^21 = 11 slip Ici , bp2 = 0 22 (340 

The test matrix for Theorem 4 is therefore 

S = 

a2Xj^(P)lbl ||f||2+2°l llgll2'° 

11 gll2 Icl + a2X.j^(P)lbl 11 f II2 -OgP 

(3?) 

By choosing 

l/^M(P)rbl l|fll2 ) ^2 2/11S II2 Ici (36) 

one finds that S is negative definite if and only if 

V Q )  
> 2 |b| Icl llflU |lg||, (37) 

That is, given the initial assumptions, hybrid system 

(22) satisfies the hypotheses of Theorem 4 and is therefore 

exponentially stable if inequality (3?) is satisfied. The 

weak coupling nature of this condition is obvious.5 

Example Consider the point kinetics model of a coupled 

core nuclear reactor with -t cores (see [33]; [3^]) described 

by the set of equations 

6 
A^p^(t) = [p^(t) - - P^]p^(t)+ p^(t)+^2^ Pk^^ki^t) 

P. 0 

iO 
h.i(t-s)p.(s)ds , 
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Cj^i(t) = ^.j^LPj^Ct) - Cj^^(t)] , 1=1,...,^, k=l,...,6 

(38) 

where : R R and : R _+ R represent the power in the 

i^^ core and the concentration of the precursor in the 

i^^ core, respectively. The constants A^, e^, 

^io' \i all positive, where 

& = Pki • 

The functions hj: R^ _+ R determine the coupling via neu­

tron migration from the core to the i^^ core. The 

reactivity p^(t) of the i^^ core is expressed by the rela­

tion 

Pj^(t) = Wi(t-s)pu(s)ds , i=l,...,i. , (39) 

—oo 

where w^^ : R"^-»- R. Making the physically realistic assump­

tion that 

t 
lim c^.. (t)e = 0 , k=l,...,6 , i=l,...;t (^0) 
t+.oo 

one obtains from (38) 

r ^ ~\r1 (t-s) 
Cki(t) = J Pj_(s)ds , k=l,...,6 , 

-00 

i=l,... . (4l) 
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By using (39) and (4l) to eliminate p^(t) and c^^(t) from 

(38), one is left with -t functional differential equations 

which will now be modified, as in Example 2, to be of the 

form (15)' 

In order to simplify the notation, let 

fj_(t) - A^^[Wj_(t) + ^2^ Pki\i® 

(42) 

(43) 

n^Ct) = A7\j^(t} i=l,... j't (lA) 

and 

e .. P. 
gii(t) = h.. (t) , i/j , i,ô=l,...,t . (4^) 
—u i. 10 ^ 

To put (38) into appropriate form, let 

z\{i) = Pj^(t+^) ; T < 0 , i=l,...,^ . . (46) 

Eliminating p^^t) and c^^. (t), making the change of variables 

s = t+T, and noting that Pj^(t) = z^(0) one obtains = Ax^, 

where = (z^), i=l,...,^, and 
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,.0 

-Kj^z^(O) + j fj^(-u)z^(u)du 
. — 00 

Z^Ct) = Aj^x^C-c) =< 

r ^ 
+ 2^(0) j n^(-u)z^(u)du 

-CO 

t ,0 , 
+ Z 1 .(-u)z^(u)du , T:=0 

3/1 • 

A 
v„4(u) 

U=T 
5 T < 0 

(47) 

The initial condition is therefore ZqCt) = e^^Ct) = p^C?), 

T < 0, 1=1,...,-^, the past history of p^(t) at t=0. 

For some > 0, define the functions 

m^(u) = 

, L.u 
L^~ e , u < 0 

! LT^ + 1 , u = 0 

i=l,... ,-t (48) 

and let Z^, i=l,... j-t^be function spaces on (-™,0] with their 

respective norms defined, using the Lebesgue-Stielties 

integral, as 

0 

liz^li^ = [j z^(u)^dmj_(u)] 
-OO 
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•î O 1* -î O ^4 ̂  
= Lz (0) + J z (u) e du] , . 

-CO 

(49) 

Then is an I^-space with the above norm and z^ eZ^. 

System (4?) may be viewed as an interconnection of t 

isolated subsystems described by 

' -K^z^(O) + J f^(-u)z^(u)du 
-OO 

. 0 

z^C-c) = F^z^Cr) = < +Z^(0) j nj^(-u)z^(u)du , t=0 (50) 
-OO 

i=l,...;&. For<5^ choose the Lyapunov functional 

P f ® P L.u 
V,-(a,. ) = a_. (0) + K,. 1 a-(u) e du , 1=1,...,-^ . 

J. X X X J X ' 

-00 

(51) 

Then 

min(l,Kj^) Ha^H? < V^Ca^) < max(l,K^) Ha^^H? (52) 

and 

, T 0 
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= 2a^(0)F^aj^(0) 

0 L.u 
+ 2K^ j a^(u)F^aj^(u)e ^ du . (53) 

— 00 

For initial conditions satisfying 

O I>4T 
lim a-C-r) e =0 , i=l,...,^ , 
t-»-™ 

integration by parts yields 

• 0 . L.u -^ L.u 
ai(u)Fiai(u)e du = du 

_00 -00 

i i 
0 2 L^U 
a^(u) 0 du , i=l, . 

_oo 

(5?) 

Let 

0 

^i ~ [ j aj_(u)^e ^ du]^ , i=l,...,'t , (56) 
— 00 

anc. assume > 0 can be chosen such that 

T 

Ci ^ [ I f.(u)2e i du]% 

0 

(57) 

and 
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CO T 

L.u 
di ̂  [ j n^(u)^e ^ du]^ , , (58) 

0 

finite. Applying (55) and the Cauchy-Schwarz inequality 

(53), one obtains 

= 2aj^(0)[-Kj^aj^(0) + J f j^(-u)aj^(u)au 

0 
+ a^(0) j n^(-u)a^(u)du] + 2K^[J a^(0)' 

-00 

7 r ° p L.u 
2 ̂ i J a^(u) ® du] 

_00 

g r ° -Li u/2 L. u/2 
-E<2j(0) + 23^(0) I [f^(-u)e ][a^(u)e ]du 

_oo 

- -L,u/2 L.u/2 
+ 28^(0)2 j [n^(_u)e " ][a^(u)e - ]du 

-00 

r° p 
- j a^(u) 0 du 

-CO 

< -K.a. (0)^ + 2c,a. (0)b. - K.L.b^ + 2d.a. (0)\. 
X X  X X  X  X X X  X X  X  

(59) 
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i=l,... ,-1-, a polynomial in a^(0) and The first three 

terms are a quadratic form which is negative definite if 

JTT > c^ , i=l,...,t . (60) 

This may be interpreted as a condition which requires the 

most recent history of the reactor to dominate the dynamic 

behavior of the system. The fourth term in (59) is a 

third order term and therefore, if (60) is satisfied, then 

is negative definite in some neighborhood of 

the origin. That is, for any such that 

0 > 0^ > - ̂  K^(L^+l) + K^(L^-1)2 + c|]^ (61) 

(where the lower bound is the maximum eigenvalue of the 

quadratic terms) one has 

r-^T f _ TH \ ^ ^ f ^ ^ ii ^ ii 2 • —1 ? 

(62) 

for ||aj|sufficiently small. It follows from (52) and (62) 

that subsystems possess Property B. 

For the interconnections, let 

00 Lu 

^ij ~'-j ^ , i,j=l,...,^ . (63) 

0 

Then 



www.manaraa.com

36 

g..(-u)a.(u)du 

^ r 0 -L.u/2 L.u/2 
= 2a.(0) 2 [g..(-u)e ^ ][a.(u)e ^ ]du 

J- z J 1J J 

3A " 

< ai(0) Z < lUilli 2 Zc^j Hsijll j . (64.) 

Since it follows that 

bii = 0 , = 2Cij > 0 , i/^; i,j=l,.../L . (65) 

Theorems 5-7 may now be applied given the constants in (61) 

and (65)• For example, if ̂  = 2 Theorem 5 yields the con-

Thus, it may be concluded that, if each core of a 

coupled core nuclear reactor is exponentially stable when 

isolated, and if the coupling between cores via neutron 

migration is sufficiently weak (as determined by Theorems 

5 or 6), then the reactor is also exponentially stable. 

Finally, note that if d^^ = 0, i=l,...,-t, then the sys­

tem equations (38) are linear and the third order term in 

(59) is zero. Consequently, the lower bound on cr^ in (61) 

may be utilized in (62) for arbitrarily large ija^H^. There­

fore, in this case the exponential stability would be global.I 
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V. STOCHASTIC DYNAMICAL SYSTEMS 

In addition to dynamical systems on Banach spaces, 

Lyapunov's direct method has also been applied in recent 

years to stochastic systems whose trajectories are Markov 

processes. Systems of interest, however, are such that 

trajectories are not solutions of a differential equation 

in the same sense as discussed in Chapter III. The pro­

cedure which enables the Lyapunov stability analysis of 

stochastic systems is to utilize the dynamics of the so-

called backward diffusion equation for Markov processes 

(see, e.g. 13?], [36]). The resulting stability theorems, 

while similar to those given in Chapter III, must be con­

sidered independently of the previous results due to second 

order effects which can occur. 

Random processes t eR"'", will be considered 

which are defined on a probability space (Q,A,f), where Q 

is the event space, d is a a-algebra of events in Q, and 

fis a probability measure on d. The random behavior of 

is characterized by the distribution function 

P(t,B) ='P[xj. eB} , (66) 

and the transition function 

P^(t,B) eBjx^ =a} , (67) 
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the latter denoting a conditional probability. The evolu­

tion of the distribution function is completely determined 

by the transition function as follows 

P(t+T,B) = I P^(t,B)P(T,da) . (68) 

aEE% 

Define the operators teR"^, on the functionals of 

as the conditional expectation 

v^(a) = T.j-V(a) = E^V(x^) = | v'(b)F^(t,db) . (69) 

beR^ 

Then, if is a homogeneous Markov process, it can be shown 

that T.(. is a semigroup and can therefore define a dynamical 

system as in Chapter III. Letting A be the infinitesimal 

generator of T.^ (which exists, for example, if is right 

4» A ^ \ «-S 4- r> ^ 

= Av^ , VQ(a) = V(a) . (70) 

This is known as the backward diffusion equation of x.^. 

In particular, if 

i 1, 

V(a) = 13(a) = < , (71) 

a eB 

0, a /B 
i 

the indicator function of B, then 

T^Ig(a) = P^(t,B) (72) 
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and satisfies the equation 

^ PJt.B) = APjt,B) , P^CO.B) = Ig(a) . (73) 

This defines the fundamental solution of (70) and cor­

responds to the case where the initial condition Xq(cù) = a 

is constant. It follows from (69), therefore, that the 

subset of solutions with nonrandom initial conditions com­

pletely characterizes the behavior of x^. Henceforth, it 

will be assumed that Xq( oi) = a is a constant. 

In the following development some specific types of 

Markov processes will be of interest. For example, x^(co) 

may be defined as the solution of the Ito differential 

equation [35]-[37] 

dx^ = m(x^)dt + a(x^)d^^ (7^) 

where eR^, t eR^, is a normalized Gaussian random 

process with independent increments. Equation 7^ must be 

interpreted as an integral equation, but is usually written 

in the above differential form analogous to corresponding 

deterministic differential equations. It will be assumed 

that (74) is well-posed in the sense that it possesses 

unique solutions whose distribution functions are uniquely 

determined by some infinitesimal generator A. 

Two particular cases are of interest. First, suppose 
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a normalized Wiener process. The infinitesimal 

generator then has the form 

AV(a) =ci^V(a) = m(a)'vY(a) + 5 tr[a(a)' V V(a)a(a)] . CL C. ao. 

This corresponds to the case where the stochastic disturbance 

is "white noise". 

Another common form for the disturbance is "shot noise" 

which is obtained by letting be a normalized Poisson 

step process. The independent components q^ of q experience 

a jump in any interval of length At with probability 

Pj^At + o(At). The jump amplitude distribution is given by 

Pj_(dqj^) and is such that 

(7?) 

J qi^iCdq^) = 0 i=l,...,m (76) 

and 

i=l,...,m (77) 

The corresponding infinitesimal generator is 

A7(a) -PV(a) = m(a)'^V(a) 

(78) 
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where a . denotes the column of cr. 

Note that if Y has the quadratic form V(a) = a'Pa then 

oCV and jDV will be identical. That is 

o^a'Pa =53a'Pa = 2m(a)'Pa + tr[ff(a)'Pcr(a)] . (79) 

Therefore, results obtained for systems of the form (7^) 

using quadratic V functionals will apply to systems with 

either Wiener or Poisson disturbances. 

Another type of Markov process is one which is gen­

erated by the equation 

XL,. = (80) 

where is a jump Markov process taking values in the 

set Y = î.y^, i=l,...,N]. The probability of a jump from 

^i ^j interval of length At is Pj_j-At + o(At). 

In this case, in order to be considered as a Markov process, 

the system state must be augmented by the disturbance 

y^. The infinitesimal generator for this pair is given by 

AV(a,yj^) -ûVCa,y^) = f(a,yj^)'V^v(a,yj_) 

N 
+ Z Pii[V(a,y.) -V(a,y.)] . (81) 

1=1 J 

IÂ 

In this case, only part of the system state is of interest 

in a stability analysis, namely The definitions and 
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theorems will take this possibility into account. 

Given a Lyapunov functional V in the domain of A, the 

infinitesimal generator for some Markov process z^, the 

stability theorems for stochastic systems are based on the 

equation 

E V(z.) = VCZQ) + E 

t 

0 
AV(z^)dt (82) 

which is called Dynkin's formula [35]-[3?]. Then AV, which 

may be interpreted as the average rate of change of V(z^), 

performs a role analogous to that of 7 for deterministic 

systems. 

There are several types of stochastic stability which 

could be considered. In the subsequent results the follow­

ing definitions vill be used. It is assumed that systems 

(74-) and (80) are such that they possess the trivial solu­

tion x^(co) = 0, t eR^. 

Definition 8: The trivial solution is said to be asymp­

totically stable in the large with probability one (ASL 

w.p.l) if, given Xq - a (and yg eY), 

(i) for every e > 0 and p > 0 there is a 6 > 0 such 

that for any a eR^, |aj <6 implies 

P[sup^ Ix^j > E 1 XQ = a} < p, and 
t ER 
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(il) 1x^1 0 with probability one.I 

Definition 9: The trivial solution is said to be ex­

ponentially stable in the large with probability one 

(ESL w.p.l) if, given any XQ = a (and yg eY), condition 

(i) of Definition 8 is satisfied and 

(ii)' for all T and e > 0 there exist positive 

constants M and such that 

flsup 1x^1 > e 1 XQ = a] < Me"^^ .| 
t>x ^ ^ 

These definitions pertain to the sample functions of 

x^ on R^, which is probably of particular engineering in­

terest since the observable behavior of a system is gen­

erally its sample functions. On the other hand moments 

might also be of interest and therefore the following 

definition is added. 

Definition 10: The trivial solution is said to be 

exponentially stable in the large in the quadratic mean 

(ESL q.m. ) if, given Xq = a (and y g eY), 

(i) for every £ > 0 there is a 6 >0 such that for 

any a eR^, |a| <6 implies 

sup E < £ , and 
t£R+ ^ ^ 

(ii) there exist positive constants M and p such that 
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Stability results for large-scale stochastic systems 

will be based on the following theorems (see [36], [37]). 

The notation V(a,.) will be used to denote the possibility 

of the augmented state as discussed previously. 

Theorem 8: Suppose there exist a Lyapunov functional V in 

the domain of A and three functions ^2 ^3 such 

that 

(i) ̂2^|a| ) < V(a,.) < 

(ii) AV(a,- ) < -^qXlal ), 

for all a eR^ (and YQ sY). Then the trivial solution of 

(740 (or (80)) is ASL w.p.l.l 
p P 

Theorem 9: If in Theorem 8, ̂ ^(r) = c^r , = ^2^ ' 

and Y^Cr) = c^r~- idiere c-j c- and are positive constants j 
J J ^ j 

then the trivial solution of (74) (or (80)) is ESL w.p.l 

and ESL a.m.I 

For other results see [36]-[41], 
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VI0 MAIN RESULTS'- LARGE-SCALE STOCHASTIC SYSTEMS 

The large-scale versions of stochastic systems (7^) and 

(80) will now be considered in a fashion similar to that of 

Chapter IV. 

The isolated subsystems for systems of the type (74) 

are 

"^i * ^^t ~ °^ii(^t^^^t ' Î (83) 

< n. >,• m. 
where e R andÇ":^ &R 1 is a normalized Gaussian random 

process with independent increments for each i=l,...,'t. 

Assume subsystems (83) possess trivial solutions. 

The isolated subsystems for systems of the type (80) 

are 

= f\(zt,yt) , i=l;...,t , (840 

i ru A m. 
where z:^ s R and y^ £ R ^ is a jump Markov process taking 

values in the set Y. = [y^, j=l,...,N, ] for each 1=1,...,^-. 
-L J J-

Assume subsystems (84) possess trivial solutions. 

The subsystems *8^. may be analyzed by Lyapunov's direct 

method as indicated in the previous chapter. As with the 

subsystems of Chapter IV the resulting information is sum­

marized in the following properties. 
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Definition 11; An isolated subsystem is said to possess 

Property C if there exist a Lyapunov function in the 

domain of (the infinitesimal generator ofj&^), three 

functions ^i2 ^13 arid a real constant 

such that 

(i) ) < V^(aj_,0 < ^ 

(ii) A^V.(a.,.) < cJ^\3(la.l) , 

for all aj^ s (and y g e ). 8 

Definition 12: If in Definition 11, = c^^r^, 

P ? 
= c^gf , ~ r , where c^^ and 0^2 positive 

constants, then isolated subsystem is said to possess 

Property D.I 

If cr^ < 0, then Definitions 11 and 12 correspond to 

the hypotheses of stability Theorems 8 and 9. Therefore 

plays the same role here as it did in Chapter IV, being 

a measure of the degree of stability of xSj,. 

The subsystems «8j_ of the form (83 ) will be intercon­

nected to form a composite system as follows 

-t 
«8 : dz^ = m^(z^)dt+g^(x^)dt+ 2 ^ijC^t^^^t » (85) 

i=l,...,'t, where = (z^), i=l,...,^. The disturbances 

^ are assumed to be independent. Letting m(x) = 



www.manaraa.com

h7 

(m^Cz^) + g^(x)), a(x) = ((a^^ (z^'))), i, j=l,... j-t, 

and = (^^), then (85) can be expressed 

equivalently as 

^ : dx^ = m(x^)dt + cr(x^)d^^ (86) 

which is identical to (74). It is assumed that (86) 

possesses the trivial solution x^ = 0, t eR^, and that 

composite system x& and its isolated subsystems ;«Sj_ are well-

posed (see u35]-[37]). 

Subsystem of the form (84J will be interconnected 

to form a composite system as follows 

2% = + giCzt'ft) (87) 

i=l,...,^, where x^ = (z^), i=l,...,'t. The disturbances 

y^ are assumed independent. Letting i(x^y) = (f^Cz^^y^) + 

gj^(x,y)), i=l,...,'t, where y = (y^), i=l,...,^, then (87) 

can be expressed equivalently as 

^Î x^ = f(x^,y^) (88) 

which is identical to (80). It is assumed that (88) 

possesses the trivial solution x^ = 0, t eR^, and that 

composite system ̂  and its isolated subsystemsare well-

posed (see [37], [38] ) .  

Note that composite systems (85) and (87) contain 
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stochastic disturbances not only in the subsystems but in 

the interconnecting structure as well. The following re­

sults will make it possible to determine the influence of 

these disturbances on the stability of the composite system. 

The proofs of the following theorems may be found in 

Appendix B. 

Theorem 10: Assume that composite system ̂  (described by 

(85") or (87)) satisfies the following conditions: 

(i) in (85), = (^^); i=l,...,^, is either a 

Wiener process or a Poisson process, and there 

are no stochastic disturbances in the inter­

connecting structure, i.e., c^..(z^) = 0, i/j; 
J 

(ii) each isolated subsystempossesses Property 

C; 

(iii) given the Lyapunov functionals and comparison 

functions 4^^) 1=1,...,^, of hypothesis (ii), 

there exist real constants b^^, i,j=l,. 

such that 

< [-fijdail)]^ J bi.[+.3(|a^|)]^ (89: 
J 

for all a eR^ (and y eY); and 
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(iv) there exist positive constants a^, i=l,...,'t, 

Then the trivial solution ofis ASL w.p.l.| 

Note that this result is quite similar to Theorem 3 

of Chapter IV. In fact, the test matrices are identical 

and therefore all observations following Theorems 3 and h 

in Chapter IV are applicable. This includes the results 

involving M-matrices. Theorems ^-7 are readily adaptable 

in an obvious manner to apply to the above large-scale 

stochastic systems. 

The case where composite system described by (85) 

has nonzero interconnection disturbances remains to be 

considered. This will introduce additional terms into 

the test matrix. 

Theorem 11: Assume that composite system (described 

by (85)) satisfies the following conditions; 

such that the test matrix S = ((s^^)), l,j = 

l,...,-t, defined by 

s (90) 

is negative definite 

(i) in (85), = (^^), i=l,...,^, is a Wiener 

process and in general the interconnecting 
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structure disturbances are nonzero; 

(ii) each isolated subsystem possesses Property 

C; 

(iii) given the Lyapunov functionals and compari­

son functions i=l,...of hypothesis 

(ii), there exist real constants b^^, i;j= 

1,...,^; such that 

I' ^ 
< [•ijClaiDP _2 (91) 

for all a eR^5 

(iv) for each 1=1,...,-^, there is a positive 

constant e^ such that 

*i'^aiai"i(*i/Gi - ®i '*1!^ (^2) 

for all aj^ sR i=l,.../^; 

(v) for each , 1,3=1,...,^-, i/^, there exists a 

constant d^j > 0 such that 

^ (93) 

H z ^ 
for all a^ sR J, j=l,...,^; and 

(vi) there exist positive constants 1=1,...,-^, 

such that the test matrix S = ((s^^^.)), i,j=l,...,^ 
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defined by 

"13 

1 ^ 

Vk\i ' 

k^i 

i[a.bi.+a b ] , 1/j 

(94) 

\ 
1] 0 j: 

is negative definite. 

Then the trivial solution of is ASL w. p.l.| 

Theorem 12; If in Theorems 10 and 11 each isolated sub­

system ,8^ possesses Property D, then the trivial solution 

of j<5 is ESL w. p.l and ESL q.m.| 

Finally, by taking advantage of the equivalence 

between the infinitesimal generators ̂  and 3D for quadratic 

Lyapunov functionals, as expressed in (79), the above re­

sults can be extended as follcvs. 

Theorem 11: Assume that composite system (described by 

(85)) satisfies the following conditions: 

(i) in (85), = (^^), i=l,...,t, is either a 

Wiener process or a Poisson process, and in 

general the interconnecting structure disturbances 

are nonzero, 

(ii) each isolated subsystem,#^ possesses Property D 

with V^(a^) = where P^ is a positive 

definite n^^ xn^ matrix; 
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(iii) given the matrices of hypothesis (ii), there 

exist real constants b. i, j=l,...such that 
J 

1 -f/ 
gi(a) P^a^ <2 ja^j b^^ia^l (95) 

for all a sR^; 

((iv) for each , i, j=l,... ,-i, i^^, there exists a 

constant > 0 such that 

< d^jlajl^ (96) 

for all aj eR^j, j=l,...,^; and 

(v) there exist positive constants i=l,...,'t, 

such that the test matrix S = ((s^^)), i,j=l,...;t, 

defined by 

ai(o,+b„) + , 1=3 

k/i 

(97) 

iCGi^ij+ajbji) , 1/j 

is negative definite. 

Then the trivial solution of ̂  is ESL w.p.l and ESL q.m.B 

Note that in Theorems 11-13 the interconnection dis­

turbance terms d^^, k;,i=l,... ,'t, k^i, which express the 

magnitude of the disturbances, occur on the diagonal of 

the test matrix. Their effect on the negative definiteness 
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of S is to make more restrictive the conditions on the re­

maining parameters of the matrix. That is, the disturbances 

have a degrading influence on the stability of the com­

posite system ,8. 

As in Chapter IV, these results are also of a weak 

coupling nature. In addition, the stabilization procedure 

suggested there is also applicable here. 

Attempts at applying the theory of M-matrices to 

Theorems 11-13 are not fruitful due to the addition 

diagonal terms. 

The following examples will illustrate the results 

obtained in this section. The first example is a stochastic 

version of the indirect control problem. The second ex­

ample is of a nonlinear system with random parameters. The 

last example is included as a demonstration of the non-

redundancy of various results. 

Example 5: Consider the following version of the indirect 

control problem with shot noise 

4- J U  f 4* J_ T* r r  (  rrJ ^ «  t] 

2 
dz^ = [-pz^ -rf(z^)]dt + c'z^ + 2 

> (98) 

1 2 4-
where z^ £R and z^ sR, t sR . The matrix A is assumed to 
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be stable, b and c are -vectors, the scalars p and r are 

positive, the matrix valued functions a.. are assumed to 
J 

satisfy the inequality (96), and q^, i=l,2, are independent 

Poisson processes. The nonlinear function f is continuous 

and satisfies the condition 

0 < agfCag) < Ka| (99) 

for some constant K > 0. 

The isolated subsystems are chosen as 

^1 * '^^t " + C7^]_(z^)dq^ 

: dz| = [-pz^-rf(z|)]dt + cT22(z^)dq^ 

(100) 

Since A is a stable matrix, there exists a positive 

definite symmetric matrix P such that a'p + PA = -Q is 

negative definite. Choosing = a^Pa2, one has for 

5 ~ 2%M(P ) , 

cUiU 

Vi(ai) = a^CA^P+PAja^ + tr[CT^^(a2)Po-^^(a)] 

< -a^Qa^ Ij^ll^^l^'lj 

^ 12-2_ 1 " 

2 
m 

(101) 

(102) 
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ForxSg choose ~ ̂ 2 that eg = 2 and 

dDVgCa^) = -2pa| - ZragfCag) + li^22^^2^11m 

< (-Zp + dgg^lagl^ • (103) 

Isolated subsystems JS-J_ and both possess Property D 

with 

= -X%(Q) + , (104) 

and 

= -2p+d22 • (105) 

For the interconnections one has 

2g^(a)'Pa^ = 2f(a2)b'Pa^ < 2Klbl >^(P)la^lja^l (106) 

and 

2g2(a)'a2 = 2a^ca2 < 2lc|la^llagl , (107) 

giving 

bii = b22 = 0 , b]^2 = 2K|b|)^(P) , b2i = 2|c| . (108) 

By choosing = 1/>>^(P) and = 1 matrix S of 

Theorem 13 becomes 
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S = 

+ dj_^+ d2i 

K t 

cl + Kb 

-2p + dgg + d]_2 

(109) 

which is negative definite if and only if 

P ^ 3 (^1 p ) (110) 

and 

K < b -1 il 
V5) 

yT7 d^2 " ̂ 22^ ̂l-2p - d22 - ̂22^^^ ~ i®-!) • 

(111) 

(112) 

That is, if (110) and (111) hold then composite system (98) 

is ESL w.p.l and ESL i.p. The weak coupling nature of this 

result and the degrading effect of the noise are clearly 

evident in these formulas," 

Example 6: Consider the system 

= CA(x^) + N(t)]x^ , Xg = a , 

where x^ eR , t eT, A(x) is an -t x array of continuous 

bounded scalar functions a^j(x), i,j=l,...,^, and N(t) is 

a random matrix of independent wide-band, zero mean, 

Gaussian random processes n^^.(t), i;j=l;...,^. System 

(112) may be considered as a nonlinear system with random 

parameters. 
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By letting N(t) approach a white noise matrix, Equa­

tion 112 may be replaced by an equivalent Ito differential 

equation as follows. Let cr(x) be the ^ x array of 1 x -i 

submatrices j (x^ ) where 

cTj^jCx^")' = (&ijô^jxj) , j=l,...,^, (113) 

p 
and let v(t) be the x 1 vector given by 

V C t ) — C n*! -j(t)j » « «, n^2 C t ) J ^]_2 ̂ ̂  ̂ ) ***5 ^ ̂ ̂  * 

(114) 

Then (112) may be written equivalently as 

x^ = A(x^)x^ + cT(x^)v(t) . (115) 

Following rules of transformation (see e.g. [35]), (115) is 

•»*o p rk "Ktt T't"r> on ilîï *hT OTi 

dx^ = m(x^)dt + a(x^)dw^ (116) 

^2 
where cr(x) is as above, w^ eR is a normalized Wiener 

process, and m(x) = (2n^(x)), i=l,...,^, where 

t . T _2 . 
m.(x) = Z a-.(x)xJ + •5' a. .x , i=l,.../^ . (117) 
1 3=1 

The extra term arises from the second order properties of 

Ito calculus. 

From (113) one obtains the following 
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H . (118) 

— 2 
Therefore, one has = 0%^. 

Choosing the subsystems as 

>«8^ : dx^ = "I "â^l x^dt + aj^^(x^)dw| (119) 

where w^ eR^, and letting V^(x^) = ̂  jx^j^, then e^ = 1 and 

<^iVi(x^) =^\l + I tr[c-^^(x^)'cT^^(x^)] 

< ~ii |x^|^ , i=l,...,^ . (120) 

Therefore, the subsystems possess Property D with 

c. = c - 2 

ii 
f , i=l,...,'t . (121) 

In addition, since 

/L 
g< (x) ' V V,. (x^ ) = z a:; . (x)x^x^ 

x^ " 

• O ' 
< sup a^.. (x) jx^i + |x^l Z sup |a. .(x)||xJ| (122) 

then 

b. . = supa.,-(x) , b^. = sup ja. .(x)l , i/j , (123) 

R ~ R 

i 5 j • 5̂  ̂ • 
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The test matrix S = i,j=l,...,^ is given by 

aiCsup a.j^(x)+â.f) + | 

, ® k/1 

^ij (124.) 

^(aj_ sup sup la^^(x)l) , i/j 

R 

and if S is negative definite, system (112) will be ESL 

w.p.l and SSL q.m. by Theorem 12. 

If in particular = 0, i/j, i,j=l,...,'t (that 

is, only the diagonal elements of A(x) are disturbed), 

then Theorem 10 may be applied. In fact, since 

sup la^j.(x)l > 0 

R 

the M-matrix results are applicable as well. In analogy 

to Theorem 6 one obtains the condition 

_ 9 ^ 
sup a..(x) < - a f - Z (-r^) sup |a. .(x)| < 0 , (125) 
p-t j=l ^i 
R .^i a 

1=1,...,^-, for some constants > 0, i=l,...,-t. Again, 

note the weak coupling and noise degradation implied by 

this result.I 

Example 7: The following simple example will address a 

couple of points which have arisen from the previous 
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discussion. These will be indicated as they occur, 

system to be considered is 

zt = - 3^4 - '4^^ - 4i4i 

The 

'4 = - YT4I4I + 1\2_2 
(126) 

where eR, 1=1,2, y^ eY^ = {l,-l} and y^ = [1,3/2,2]. 

The jump probability coefficients are p̂ 2 ~ 1» P21 ~ and 

Pjk: ^ 1/2, j/k, j,k=l,2,3. 

Choose the isolated subsystems as 

'̂ 1 = 4 = - 44 -

^2 = 4 = - 44141 

, (127) 

ann i PT. 

a2 
1 ' 

Vi(ai,y'̂ ) -= < 

2a' 
1 ' 

r = 1 

y^ = -1 

(128) 

) - lagi (129) 

Then 

af < Ti(ai,yl) < 2a^ , (130) 
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^iVi(ai,l) = 2a^(- + [2a^-a^] 

= - a^ -2a2 < - 2a^ , (131) 

ûiVi(ai,-l) = ^&i(&i''&l) + 5[a^-2a2] 

— - â  - ̂ 2̂ ̂  (132) 

and 

0  o 
~ sgn(a2)(-

- - " &2 ) 1=1,2,3 • (133) 

Letting = r^, ̂ 12^^^ ~ Zr^, ^21^^^ ~ 
p 

^22(r) ~ |rI and ^23^^^ = r , it follows that subsystems 

and «§2 possess Property C with 

cr̂  = -2 , <̂ 2  ̂-1 , (13̂ ) 

and that they do not possess Property D. The implication 

of this is that asymptotic stability may be shown, but not 

exponential stability. This alleviates the suspicion that 

only exponentially stable systems can be treated by the 

present method, as it may have appeared from previous 

examples. 

For the interconnections one obtains 
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gl(a)'v^Vi(ai,l) = 2a^(-a^|a2|) = -Zla^l^la^l , (135) 

g^(a)'^^V^(a^,-l) =^a^(-a^la2l ) - -^^a^l^lagl , (136) 

and 

g2(a)'^^V2(a2,y?) = sgn(a2)(a^a2) = la^lla^j^ . (13?) 

Therefore, since = la^l^ and [^1^220a21 ) = 

lagl; one has 

= ^22 ~ ̂  ' ̂ 12 ~ and b22 = 1 • (138) 

Note that b22 < 0 so that the theory of M-matrices is not 

applicable here in the previous manner. This shows that 

the theorems with negative definite test conditions are 

more general than the theorems using M-matrix conditions. 

This also was not evident in previous examples. 

Using the constants obtained above and choosing 

= 1, the test matrix of Theorem 10 is 

- -2 -1/2 • 

3 - 5 (139) 

- —1/2 —1 

which is negative definite. Therefore interconnected 

system (126) is ASL w.p.l. 

An interesting aspect of this example is that 
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possesses a structure for = -1 which in the deterministic 

case would be unstable. The importance of allowing to 

depend on the augmented state is illustrated in this case, 

since without this possibility could not be chosen to 

make negative definite.I 

Note finally that the deterministic versions of 

Examples ^-7 could be analyzed using the results of 

Chapter IV. In particular, Example 7 shows that negative 

interconnection constants b^^j, i/^j , are possible in Theorems 

3 and and that it is possible to have systems to which 

Theorem 3 applies, but not Theorem h. 
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VII. CONCLUDING OBSERVATIONS 

A number of remarks concerning the results presented 

in this dissertation and their relationship to other results 

on large-scale systems are in order. The present results 

represent a collection of selected results from papers [42 J 

through [47] which were chosen to demonstrate from 

an overall view one method of handling the Lyapunov sta­

bility analysis of large-scale systems. This is essentially 

the technique of applying comparison functions and weighted-

sum Lyapunov functionals to interconnected systems in a 

fashion which allows one to express weak coupling stability 

results in terms of conditions on a test matrix. This had 

been accomplished for systems described by ordinary dif­

ferential equations, and a few other special cases in such 

references as ["7]-[ll]. 

The present method, which is essentially a scalar 

Lyapunov method, is to be contrasted with a different ap­

proach involving vector Lyapunov functions as introduced 

by Bellman [48 ]. The latter method, although it also em­

ploys the concept of an interconnected system, departs from 

the scalar method in the manner in which the information 

regarding the subsystems and interconnecting structure is 

used. With the vector Lyapunov function method a lower 

order comparison system is obtained, the stability of which 
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is used to imply, via a comparison principle, the stability 

of the original composite system. Any test matrices that 

arise in the analysis (if any) simply define the dynamics 

of the comparison system. Since the present approach and 

the vector approach are different and yield different re­

sults, they should be viewed as being complementary results. 

Among the references available for vector Lyapunov function 

results are [l]-[6] and [^9], [50], the latter two being 

contributed to by this author wherein a new comparison 

principle for stochastic systems is obtained. 

The theory presented in this dissertation represents 

an extension of many previous results on large-scale sys­

tems. Specifically, the principle contributions made by 

this author have been the application of the method to 

general dynamical systems on Banach spaces, the extension 

of the method to a variety of stochastic systems and to 

stochastic systems with disturbances in the interconnecting 

structure, the introduction of a degree of stability (or 

instability) parameter into the subsystem characterization, 

the demonstration of additional M-matrix test procedures, 

the statement of more general exponential stability results, 

and the development of a margin of stability parameter for 

large-scale system*. Due to the more general approach 

presented here many of the results in [7]-[11] can be shown 

to be special cases of the present results. 
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It should be noted that the present results have been 

restricted to autonomous systems. This was merely to 

simplify the demonstration. In fact, the extension to 

nonautonomous systems is generally not difficult. These 

nonautonomous cases are considered in [42]-[47]. The cited 

papers also contain other results which have not been in­

cluded here, for example; corollaries exploiting specific 

interconnecting structure forms, theorems involving a dif­

ferent type of bound on the interconnecting structure, and 

further examples to illustrate the present method. 

A number of topics for further research present them­

selves when the present results are studied. Perhaps the 

most important of these is to find a technique for the sta­

bility analysis of large-scale systems which does not yield 

weak coupling results. This is the main source of conserv­

atism in present results, and it is responsible for the 

general observation that, the finer one decomposes a large-

scale system, the more conservative the results tend to be­

come. This is a disadvantage which forces a compromise be­

tween the present method and conventional Lyapunov methods. 

A closely related problem is that of dealing with un­

stable subsystems. As yet no results have been obtained for 

this case without the necessity of providing local stabiliz­

ing feedback around unstable subsystems through the inter­

connecting structure. 
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In theorems requiring the choice of arbitrary con­

stants (e.g., the a^'s of Theorem 3) it is of interest 

whether or not some computational technique exists for 

choosing these constants. It seems likely that an iterative 

procedure could be implemented in a computer program which 

would find such constants quickly. This would be especially 

important if the number of constants to be chosen was large. 

One might also have some criterion by which the choice of 

optimum constants could be made. This choice might, for 

example, be the one which minimizes the conservativeness 

of the stability condition. 

Finally, it would be of great interest to find actual 

specific physical problems for which the present theory 

would provide a useful solution. This would do much towards 

making these results attractive tools for analysis. Example 

the coupled core nuclear reactor system, was an attempt 

at providing such a problem. Each of the constants and 

functions in that example may supposedly be determined by 

experimental or theoretical means. This would be a case 

therefore where the stability results obtained would be 

physically verifiable. 
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X. APPENDIX A 

The proofs of the main results of Chapter IV regarding 

the stability of large-scale systems on Banach spaces are 

as follows. 

Proof of Theorem By hypothesis (i) of Theorem 3 and the 

definition of Property A, there exist admissible Lyapunov 

functionals for each isolated subsystem By Defini­

tion 4, the sets are closed and bounded. Choose as a 

Lyapunov functional for the composite system x& the weighted 

sum 

V(a) = E a.V.(a.) (l40) 
i=l ^ ̂  1 

where the constants > 0, 1=1,...,^-, are as yet unde-

•hQTiTn"!-nciH Tf m = m-i n T rr. m . I T.Vior» a PÛ TTnTiTnoc 

V^(aj^) < V(a)/a^ < m/a^ < m^ (l4l) 

or 

That is, is bounded. In addition, if Theorems 1 or 2 

are applied to ><3 with m as specified, then a^, i=l,.../l, 

are guaranteed to be such that hypotheses (i) and (ii) are 

applicable. 
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The continuity of V in (l40) follows from the con­

tinuity of i=l,...,^. Furthermore, applying Definition 

4 to (1^0) yields 

V(a+x) - V(a) = 2 a. [V. (a.+z^) - V(a. )] 
i=l 1 1 1 

< 2 a. [Vv . (a. ,) + o (|| z^jl. ) ] 
i=l 1 1 1 1 

= 2 a.vv . (a. ,z ) + oCjj xji ) . (1^3) 
i=l 1 1 1 

That is, 

VV(a,x) = 2 . (l»+lf) 
i=l 

Since VV^, i=l,... j't, are linear and continuous in z^, 

uniformly with respect to a^ j it follows that W is 

linear and continuous in x, uniformly with respect to 

a 6 0%. 

Finally since V^(0) = 0, i=l,...,^, then V(0) = 0 

and therefore V is admissible by Definition 

By Property A there exist functions ^12 

for each subsystemsuch that for a^ 1=1,...,^, 

,2 < V(a) < Z . (1^5) 
i—1 i—1 
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The summations on the left and right are both positive 

definite, decrescent and radially unbounded. Therefore 

by the properties of such functions (see e.g. [12]) each 

can be bounded above and below by functions of class KR. 

That is, there exist \1)^, eKB. such that 

^lCllaii)<_2 a^^.^dla-ii-) , (1^6) 
i—1 

and 

, (1^^) 
i—1 

and therefore 

^idlall) < V(a) < ^2^114) aw 

for all a e Qjj^. 

Finally, by the linearity of W and by hypotheses (i) 

and (ii) of Theorem 3, one has for a D D(A) 

VV(a,Aa) = a^y7V^(a^,A^a) 
i—1 

= 2 a. TV. (a. ;F.a. + G.a) 
i=l X J- J. X X 

= 2 [vVj_(a^,F^a^ ) + W^(aj_,G^a)] 
i—1 
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i—1 

4L , ^ 2 
a^(aj_+b^j_){[Tj)j_2(llaj_ll j_)] 

1 
i i=i [l'j_3(11 a^ll^)]2[11)^^(1 la^ll^.)]'-

= u' S u (149) 

where u = ( a^^ll j_) ]^), 1=1,...,-^, and S is the test 

matrix of hypothesis (iii). Note that the symmetry of the 

matrix S is deliberate. 

By hypothesis (iii) the positive constants cc., 

i=l,...,-i, may now be chosen such that S is negative 

definite. Therefore ^(S) is a negative real number so 

that 

U Su < \is) lur = ^(s) ^i3(llaj|j_) . (150) 

Since the term on the right is negative definite, it may 

be bounded by the negative of some function of class K. 

That is, there exists 11)3 eK such that 
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ys) ^i3(lla.ll.) < -^3(llall) . (151) 

It follows from (l49)-(l$ï) that 

VV(a,Aa) < - Tji^Cllall) . (152) 

All conditions of Theorem 1 have been satisfied for ̂  and 

therefore the conclusion of Theorem 3 holds.I 

Proof of Theorem 4-: Theorem k- alters the hypotheses of 

Theorem 3 in a manner which makes all comparison functions 

i=l,.../&; j=l,2,3 of the same order of magnitude. 

Composite system ̂  may be shown to be exponentially stable 

if the comparison functions ^2 ^3 (1^#) and 

(152) are of the same order of magnitude. This is ac­

complished as follows. 

By the definition given in Chapter II on notation 

regarding functions of the same order of magnitude, it 

follows from hypothesis (i) of Theorem h that there is a 

function ij) sKR (e.g.,^ = \|j^^),and positive constants 

k^j, i=l,...,'t, j=l,2;3, such that 

l'il(r) > k̂ î Cr) , 1̂2̂ )̂ < k̂ ĝ Cr) , 

^^^(r) 2 k^^^Cr) (153) 

for all r 20, i=l,...,^. Define the functions ^2 

4)3 as follows 
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T|)j_(r) = min ' (l5̂ ) 

^p(r) = ( Z a.k.p)-Kr) , (155) 
^ i=l ^ 

and 

= -X^CS) min (k^2)i|)(r) , (l56) 

each of class KR. Then one obtains, using the norm W " I I  as 

defined in (l4) and the fact that is a strictly increas­

ing function, 

i=l ̂ i^il^HaJli) 2 a^k^^T|)(ljaj_l|j_) 

> min (a.k., ) Z ;(,(j|a.||. ) 
i 1 i=l ^ ^ 

> min (o.k.. ) max T|)(|{a.||. ) 
i 1 i ^ ̂  

= min (a^k^^)Tj)(m^ !!aj|j_) = Tt^djalj) . (157) 

Also, 

1 ^ 

1—X 1—1 

< ( Z a.k.p) max ̂ (jjaJj. ) 
i=l 1 i ^ ̂  
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= ( S a.k.5)Tj)(max ilaJl . ) 
i=l 1 i ^ ̂  

= ) • (l58) 

Finally, since ̂ j^(S) <0, one has 

I ^i3(l|ailii) < VS) ̂  k.^;j,(||a.||.) 
i—1 i—1 

< >^(S) min (k^^) ij)(1|a^^H ) 
i i—1 

< >^(S) min (k^^) max 4'(||aj^||j^) 

= ?^(S) min (k^^j^Cmax II) = -ijj^dlall) . (159) 

j-iiex'ej. Ore VXTO^J aiiu. v.xpj./ cu. c sai/x&xjLcu., ca-iiu. axxiuc 

^1» ^2 the same order of magnitude, composite 

system;& satisfies the conditions of Theorem 2. Hence, the 

conclusion of Theorem 4- holds.| 

Proof of Theorems *? and 6: These two theorems follow from 

the definition of M-matrices and the remark preceding Theorem 

5. Let D be the matrix defined in (20) and let W = C[6^^a^)), 

i,j=l,...,^. Then it is easily shown that the matrix 

S = - "^[WD + d'w] is identical to the test matrix S of 

Theorem 3. By the result cited from the theory of M-matrices 
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(see Appendix C) one may conclude that if D is an M-matrix, 

then constants > 0, i=l,...,'t, exist such that WD + D*W 

is positive definite, and hence S is negative definite. It 

is sufficient therefore to assume that D is an M-matrix in 

place of hypothesis (iii) of Theorem 3. 

In Theorem 5 the test matrix is assumed to satisfy 

the condition on the off-diagonal elements and condition 

(i) of Definition 7. These conditions are given in place 

of hypothesis (iii) of Theorem 3 and since they imply that 

D is an M-matrix the conclusion of Theorem 5 holds. 

In Theorem 6 condition (ii) of Definition 7 is used 

in place of condition (i). The positive vector required 

is X = (X^), i=l,...,^, and the condition Dx > 0 may be 

written as 

I 
- (a. +b. . ) - Z X.b. . >0 , i=l,...,^ . (160) 
XI 11 j J tJ 

A simple rearrangement of terms yields (21) and therefore 

the conclusion of Theorem 6 holds. 

In an analogous manner conditions (iii), (iv) and (v) 

could be used to obtain additional results. Condition (v) 

could even be expressed in terms of the stability of the 

linear system x - Dx. Such extensions however are obvious 

once their possibility is pointed out.8 
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Proof of Theorem 7: This theorem is a simple consequence 

of the remark (see Appendix C) preceding Theorem 7 which 

is another result from the theory of M-matrices. The 

modification suggested is simply insufficient to change D 

from its M-matrix condition. The conclusions of Theorems 

5 and 6 are therefore unchanged. Hence the conclusion of 

Theorem 7 holds.B 



www.manaraa.com

83 

XI. APPENDIX B 

The proofs of the main results of Chapter VI regarding 

the stability of large-scale stochastic systems will be 

given subsequently. First, however, some preliminary re­

sults are in order. 

The following matrix inequality will be used 

trla'BA] = Z A..B.^A^. = Z CT'.BCT . 
i,j,k i '1 

<e Z ia = g z 0 2  ̂  e Iktl^ 
i i,j * 

where a . = (a .. ) denotes the i^^ column vector of cr, and 
• 1 J 1 ' 

Î O 
e is a scalar such that u Bu < e|u| . 

Some forms ofo2f,£) and Q for special cases will also 

be used. Consider firstà^V^ for system (8^) 

«̂ V̂ . (a:; ) = m(a)' V̂ V. (â ) +  ̂tr[a(a)'%̂ V̂̂ (â )a(a)] 

= Z [m.(a..) + g.(a) ] ' v  V.(a.) 
j=l J J J 1 1 

= 2 [m .(a .) + g .(a)] &. .V V. (a. ) 
j=l J J J ij a^ 1 1 
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1 

= Inij^Caj^) + gj_(a)]'V^ V^Ca^) 

1 ^ I 
+ P Z tria. . (a- ) V V. (a. )cr. ̂ Ca. )] 
^ J J i i " w 

1 
+ -p 2 tria, .(a.) V_ _ V.(a. )a..(a. )] . (162) 
^ j =2 J i i tl 

If in (85), ^=1,...,-^, are Poisson processes then let 

At + o(At) be the probability of a jump experienced by 

the i^^ component of in any interval of length At. Let 

the corresponding jujnp amplitude distribution be 

The infinitesimal generator for (85) may then be written 

as 

X>V(a) = m(a)'^V(a) 

u m. 
J 

+ 22 
j=l k=l 

.  +  ° . j , - V ( a ) ] P k P k ( d q & )  

(163) 

where a . , denotes the column of a . = (a..). 
• J jK 'J 1J 

Then if c7^^(a^) = 0, i/^, i,j=l,...,^-, one obtains 
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DV. (a. ) = Z Im .(a .) + g .(a)] V V. (a-) 
j=l J 0 J j 

+ .f, .J J, [Vl(ai + Ol],k(aj)qk) -Vi(ai)]r&Pk(aqk) 

il 

= Lm. (a. ) + g_. (a)]'v. V. (a. ) 
XX X J. ± 

" i  r  .  . . .  

% 

= 5DiVi(ai) + gi^a)'V^Ca^^) . (16^) 

The equivalence of and D for quadratic V functions 

is shown as follows. Using (78), one has 

D a'Pa = inCa)'v^(a'Pa) 

m j-
+ Z [(a+a .(a)q. ) P(a+cr • (a)q. ) - aPa] 

•  J  • X X  •  X  X  

• Pj_Pj_(dq^) 

I m 
= 2m(a) Pa + Z La'Pcr .(a) + a .(a) Pa]p. 

i=l 

• J SiPi(asi) 

ii 
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m I" p 
+ 2 a ^(a) Pcj j_(a)Pj_ J ) 

• • q. 

= 2m(a)'Pa + trIcr(a)'Pcr(a)] (165) 

where the normalizing conditions (76) and (77) have been 

used. For (75) one obtains 

c^a'Pa = m(a)'v (a'Pa) + tr[a(a)' V (a'Pa)a(a)] 
ci di 9.3, 

= 2m(a)'Pa + tr[a(a)'Pa(a)] (166) 

which is the same as (165) and establishes the equivalence. 

Finally, for system (87) let At + o(At) be the 

probability of a jump in y^ from y^ to y^ during any interval 

of length At. Then for y^ = (y^), i=l,...,t; with inde­

pendent components, the probability of a jump from y. = 
J 

(yj); i=l,...,'t to y^ = (y^), i=l,...,'i, in an interval of 

length At has a nonzero first order coefficient only for 

transitions involving a single component. Therefore, in a 

manner analogous to the above results one obtains 

aVj^(aj^,yJ) = lfi(ai,yj) + gi(a,y^ )]'V^^Y^(a^,y^) 

Ni . 
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= C(jVi(ai,7j) + gi(a,y^ )'V^_V^(ai,y^) . (167) 

It is now possible to proceed with the proofs. 

Proof of Theorem 10: By hypothesis (ii) of Theorem 10 and 

the definition of Property C there exist Lyapunov func-

tionals for each subsystem,#^. Choose as a Lyapunov 

functional for the composite system the weighted sum 

7(a,.) = Z a,V, (a. ,•) (168) 
i=l " " ^ 

where the constants > 0, 1=1,.are as yet unde­

termined. It follows from Property C that 

a^Tj..^(la^l ) < V(a,.) < 2 1 ^iI ̂  ' (169) 
i—1 i —1 

Therefore, as in Appendix A, there exist functions ^2 

£ KR such that 

Vl(iaj) < V(a,.) < Vgtiaj) . (170) 

Note that because of hypothesis (i), which sets = 0 

for i/j, Equations 162, 16^ and 167 each have the form 

AV^(aj^,.) = A.V^(aj^,-) + Si^a, • )'V^_V^(a^, • ) . (171) 

Therefore, for the cases of interest, it follows from the 

linearity of A and hypotheses (ii) and (iii) that 



www.manaraa.com

88 

AV(a,.) = Z a AV.(a.,.) 
i=l 1 1 ^ 

= Z aj_[A^V^(aj_, • ) + gj_(a,-) ViCa^,')] 
i—X 1 

_< Z a. i a. i}!. ̂ (1 a. 1 ) 
1=1 ^ ^ ^ 

]/ •  ̂ 1/ 
+  ) ]  ̂  ̂  ' - ^ 3 3 ^ ^  

= u'Su , (172) 

where u = 1=1,...,^- , and S is the test 

matrix of hypothesis (iv). It follows, as in the proof 

of Theorem 3 in Appendix A, that 

AV(a,.) < -4^(|al) (173) 

where All conditions of Theorem 8 have been satis­

fied for ̂  and therefore the conclusion of Theorem 10 holds.I 

Proof of Theorem 11: Choose the Lyapunov functional 

V(a) = Z d.T.(a.) (1740 
i=l ^ ̂  -

as in (168). Then one obtains the analogous condition 

^idal ) < V(a) <  ̂ igClaj ) (175) 
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where 4'^, eKR. 

In addition, for this case one obtains the following 

result from hypotheses (ii)-(v) of Theorem 11, and Equa­

tions 161 and 162. That is, 

oCyU) = Z aXY. (a. ) 
i=l 1 1 1 

= + g^(a) v^_V.(a^) 
1—-L 1 

< 2 a.ia. il). ,(ia. 1 ) 
i=l 1 1 ^ 

i , r., /, , ^ 
+ )r 2 b,,[*,,(la.l) ] 

J- J J- j _2 J "J 

3/1 

,/ 2 
< T  n f n J.  r i p  M  V2\ 
- -i""i • ~li'i"'i3"'^i''J ^ 

. ? n 2(Gibij + Gjbji)L4i2(jail)]^t4j2(|aj))]^ 
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'i/j 

= u'Su (176) 

where u = i=l,... j-t, and S is the test 

matrix of hypothesis (vi). It follows as in the previous 

proof that 

o^V(a) < - 4^(ia|) 

where and therefore the conclusion of Theorem 11 

holds.I 

Proof of Theorem 12: Since each subsystem;^is now assumed 

to possess Property D, it is quite easily shown that the 

comparison functions '^2 ^3 of Theorems 10 and 11 

could be chosen as 

ij)̂ (r) = min (â ĉ )̂r̂  , , (178) 

4^(r) = max , (179) 

and 

4y(r) = X^(8)r^ . (I80) 

Then by Theorem 9, the conclusion of Theorem 12 holds.B 
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Proof of Theorem 11: This result follows directly from 

Theorems 11 and 12 and the equivalence of o^andp, given 

the quadratic functionals The hypothesis analogous 

to hypothesis (iv) of Theorem 11 is unnecessary since it 

is satisfied automatically with e^ = 2A.j^(Pj_). In (95), 

2P^aj has been substituted for V V.(a.). It follows there-11 a^ 1 1 

fore that the conclusion of Theorem 13 holds.| 
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XII. APPENDIX C 

In Chapter IV two properties of M-matrices were used 

to establish Theorems 5-7. These results are proven here. 

Theorem; Let D be an M-matrix. Then there exists a 

diagonal matrix W with positive diagonal elements such 

that WD + d'w is positive definite.I 

Proof: Let P = WD + D'W. Then since D is an M-matrix 

and W has a positive diagonal, it follows that p^^^ = 

Wĵ dĵ j + Wjdj< 0 for i/j. That is, P has nonpositive 

off-diagonal elements. 

By conditions (ii) and (iii) of Definition 7 there 

exist vectors x > 0 and y > 0 such that U = Dx > 0 and 

V - D'y > 0. Now choose w^^ = i=l,...,^. Then 

Px = (nD-4-D'VOx = + D'y 

= WU + 7 > 0 . (181) 

That is, P satisfies condition (ii) of Definition 7. 

The matrix P is seen to be an M-matrix and therefore 

by condition (v) the eigenvalues of P have positive real 

parts. But, since P is symmetric, it follows that 

P = V/D + d'W is positive definite. This proves the theorem.| 
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Theorem; Let D be an M-matrix and let p, < min RelX(D)]. 

Then D - [xl is an M-matrix.| 

Proof: If X(D) is an eigenvalue of D, then 

detU(D}I-D]= detL(X(D)-ij,)I - (D-p,I)] = 0 . (l82) 

That is, is an eigenvalue of D-pI. Since is real, 

it follows that 

ReU(D)-ij,] = ReU(D)]-ti > min Re[X(D)]-^ > 0 . (I83) 

The matrix D-^I has nonpositive off-diagonal elements and 

by (183) the real parts of the eigenvalues of D-^I are 

positive. Therefore Definition 7, using condition (v), 

it follows that D-^I is an M-matrix. This proves the 

theorem. I 
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